

Третья международная научно-техническая конференция «Battery Innovation 2021»

РАЗРАБОТКА ПРОТОЧНЫХ БАТАРЕЙ НА ОСНОВЕ ОРГАНИЧЕСКИХ РЕДОКС-СИСТЕМ ДЛЯ КРУПНОМАСШТАБНОГО НАКОПЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

КАЗАРИНОВ ИВАН АЛЕКСЕЕВИЧ

Заведующий кафедрой, д.х.н., профессор Саратовский государственный университет имени Н. Г. Чернышевского

ОСНОВНЫЕ ПРАКТИЧЕСКИЕ ПРИЛОЖЕНИЯ НАКОПИТЕЛЕЙ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

- Альтернативная энергетика компенсации колебаний выработки энергии солнцем и ветром.
- Регулирование пиковых нагрузок в промышленных электрических сетях.
- Обеспечение электроэнергией крупных домохозяйств, удаленных сельскохозяйственных предприятий.
- Системы энергоснабжения морских судов с электрическими и гибридными силовыми установками.
- Производство электромобилей.

СОВРЕМЕННЫЕ ТИПЫ НАКОПИТЕЛЕЙ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

- ФИЗИЧЕСКИЕ:
- кинетические (маховики);
- накопители электрической энергии на основе сжатого воздуха;
- гидроаккумуляторы.
- ЭЛЕКТРОХИМИЧЕСКИЕ:
- свинцово-кислотные аккумуляторы;
- никель-кадмиевые и никель-металлогидридные аккумуляторы;
- литий-ионные аккумуляторы;
- натрий-серные аккумуляторы;
- водородный цикл;
- суперконденсаторы;
- проточные редокс-батареи.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ЭЛЕКТРОХИМИЧЕСКИХ ТЕХНОЛОГИЙ АККУМУЛИРОВАНИЯ ЭЛЕКТРОЭНЕРГИИ Innovation

Электрохимичес-кая система	Срок службы, лет	Кол-во заряд- разрядных циклов	Удельная энергия, Вт∙ч/кг	Удельная мощность, кВт/кг	Стоимость, USD/кВт∙ч
Pb PbO ₂	3-5	500-800	25-35	0.003-0.35	100-500
Ni-Cd	10	2000	40-60	0.01-0.7	400-1000
Li-ion		6000	110-180	0.3-3	700-5000
Суперконденса- торы	20	1 млн	2-5	5-10	16000- 25000
Проточные батареи (V V)	20	20000	20-40	высокая	400-700
Проточные батареи (орган.)	>10	>10000	35-50	высокая	100-200

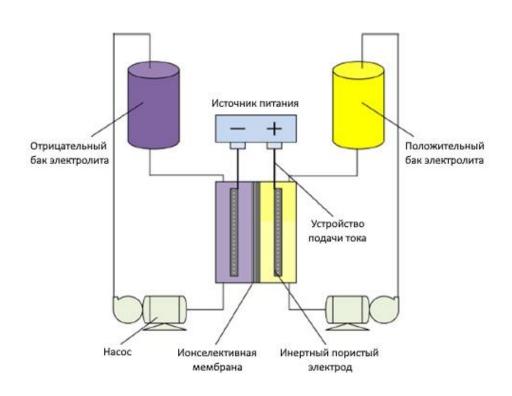


Рис. 1. Общая схема проточной редокс-батареи

ДОСТОИНСТВА ПРОТОЧНЫХ РЕДОКС-БАТАРЕЙ

- надежны, долговечны и ориентированы на промышленное использование;
- могут достичь практически неограниченной энергии и мощности при использовании все больших и больших емкостей для хранения и количества ячеек;
- простота перезарядки;
- очень быстро реагируют на изменение нагрузки и не боятся перегрузок;
- идеально подходят для установки в источники бесперебойного питания и могут использоваться в ветровой и солнечной энергетике;
- «запас прочности» по цене стоимость таких батарей примерно в два раза ниже литий-ионных;
- пожаробезопасность, обусловленная отсутствием горючих компонентов и разогрева в процессе работы;
- экологическая безопасность и легкость утилизации и переработки компонентов.

ПОЛНОСТЬЮ ОРГАНИЧЕСКАЯ РЕДОКС-БАТАРЕЯ (ORBAT)

4,5-дигидроксибензол-1,3-дисульфоновой кислоты (BQDS) и антрахинон-2,6-дисульфоновой кислоты (AQDS)

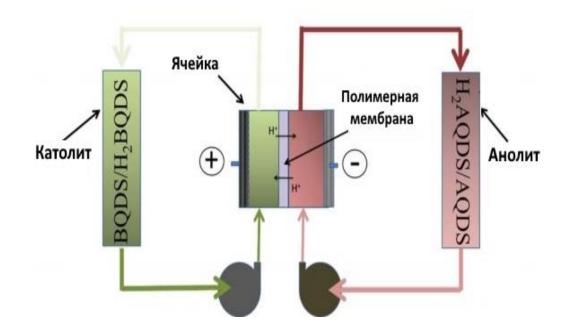


Рис. 2. Схема органической проточной редокс-батареи (ORBAT) с использованием водных растворов BQDS на положительном и AQDS на отрицательном электродах

Реакция на положительном электроде

Реакция на отрицательном электроде

HO₃S
$$\rightarrow$$
 SO₃H \rightarrow E⁰ = +0.19 V

КОНЦЕПЦИЯ СИММЕТРИЧНОЙ ОРГАНИЧЕСКОЙ РЕДОКС-БАТАРЕИ НА ОСНОВЕ АЛИЗАРИНА

$$R = -H, -SO_3H$$

Рис. 3. Ализарин (в центре) при заряде принимает два электрона и два протона для полного восстановления (слева) (*E*=0.0 B) или отдает два электрона и два протона для полного окисления (справа) (*E*=1.0 B) в окислительно-восстановительных реакциях (*U*=1.0 B)

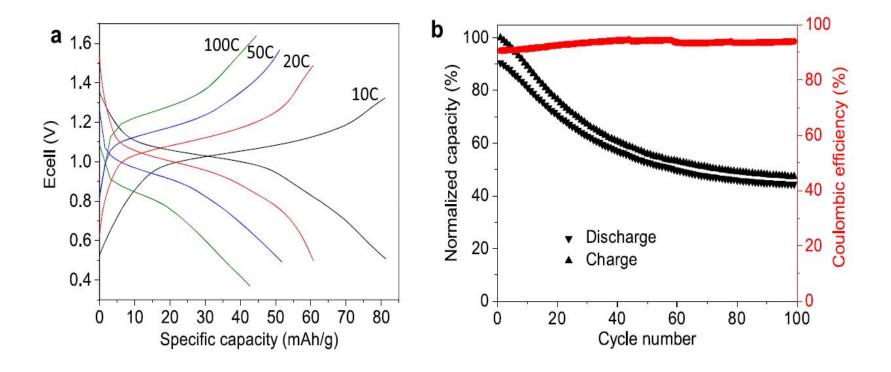


Рис. 4. (a) Скоростная характеристика симметричного ализаринового элемента при 10, 20, 50 и 100С. Удельная емкость основана на общем количестве активного материала ализарина на обоих электродах 223,3 мАч/г при 1С.

(b) Циклическая стабильность ализариновой ячейки при 10C

ОСНОВНЫЕ ВЫВОДЫ

- 1. Конструкция редокс-проточных батарей обеспечивает значительное преимущество перед твердотельными аккумуляторными батареями за счет разделения энергии и выходной мощности: первая определяется размером бака и концентрацией электролита, вторая площадью электродов.
- 2. Водные органические редокс-батареи используют водорастворимые органические и металлоорганические окислительно-восстановительные молекулы, состоящие только из доступных органических соединений. В основном это производные **хинона**, **антрахинона и ализарина**. Их высокая растворимость в воде, хорошо разделенные потенциалы окисления-восстановления, практически исключающие расщепление воды, стабильность, безопасность и низкая стоимость в масштабах массового производства, являются наиболее важными характеристиками для новых водных органических электролитов.
- 3. Направленная функционализация органических соединений освобождает окислительно-восстановительную химию от ограничений, связанных с небольшим числом элементарных окислительно-восстановительных пар неорганической природы, которые реально могут быть использованы в проточных редокс-батареях.
- 4. Перспективным направлением в разработке проточных батарей на основе органических редокс-систем является концепция симметричных батарей, в которых окислительно-восстановительный материал принимает участие как на отрицательном электроде (окисляется), так и на положительном электроде (восстанавливается). Эта методология позволяет создавать твердотельные симметричные редокс-батареи (суперконденсаторы) для накопления электроэнергии.

БЛАГОДАРЮ ЗА ВНИМАНИЕ!

Контактные данные

Название организации: ФГБОУ ВО «СГУ имени Н. Г. Чернышевского»

Адрес местонахождения: г. Саратов

Телефон: +7 (8452) 26-16-96

Адрес официального сайта: www.sgu.ru

Докладчик

Телефон: 8 927 222 70 90 E-mail: kazarinovia@mail.ru